

HRET Human Adaptation and Habitability

Countermeasure Research and Medical Care

David R. Williams MD FCFP FRCP
Director
Space and Life Sciences Directorate

Assumptions

- Mars Design Reference Mission Requires Utilization of Novel Technologies for Human Adaptation to Interplanetary Space Travel and Planetary Habitation
- ➤ The Medical/Physiological Challenges Associated with Interplanetary Space Travel will Depend upon Mission Duration or Type of Propulsion System
- ➡ Integration of Human and Robotic Activities Will Be A Critical Determinant of the Success of Planetary Exploration

Medical Requirements

Human Health & Performance During Interplanetary Space Flight

- Basic Elements
 - Nutrition (adequate, appropriate, appealing)
 - Rest (avoid chronic fatigue)
 - Exercise (fitness, recreation, motivation)
 - Human Performance (psychosocial, workload, human robotic interface & circadian factors)
- Habitability including EVA, advanced life support & environmental health
- Countermeasures & preventive measures for deleterious physiological effects
- Diagnosis of new or pre-existing conditions
- Treatment subsequent to diagnosis
- Research directed towards fulfilling all of the above

Risk Elements & Categories

Space Medicine

 in-flight debilitation, long term failure to recover, clinical capabilities and skill retention

Advanced Life Support

atmosphere, water, thermal control, logistics, waste disposal

Environmental Health

atmosphere, water, contaminants

Planetary EVA

dust, suit design, serviceability

Radiation Effects

 carcinogenesis, damage to CNS, fertility, sterility, heredity

Human Performance

psychosocial, workload, sleep

Medical Care

Environment & Technology Human
Health &
Performance

Human Behavior & Performance

Risk Elements & Categories (continued)

Bone Loss

 fractures, renal stones, osteoporosis, drug reactions

Cardiovascular Alterations

 dysrhythmias, orthostatic intolerance, exercise capacity

Food and Nutrition

malnutrition, food spoilage

Immunology & Hematology

 infection, carcinogenesis, wound healing, allergens, hemodynamics

Muscle Alteration

mass, strength, endurance, and atrophy

Neurovestibular Adaptations

 monitoring and perception errors, postural instability, gaze deficits, fatigue, loss of motivation and concentration

Critical Mission Elements for Medical Care

Novel Evolutionary Mechanism - Survival of the Technologically Adapted

Long Duration Experience

Episodes of Hypergravity

G Transitions

Physical Demands

Toxin Exposure

Human Space Flight Experience

(Includes flights longer than 30 days as of April 1999)

2014 Human Mars Mission Trajectory (typical)

Nose radius 1.71 m 5.1 m 25° 10.9 m 7.6 m 8.6 m

Vehicle Concepts based on the Triconic Aeroshell

Vehicle Components & Functions:

Piloted transit habitat vehicle

- outbound transit habitat
- Mars crew landing vehicle
- Mars surface habitat

Cargo vehicle

- arrives at Mars before crew
- delivers Mars ascent vehicle and ISRU plant to Mars surface

Trans-Earth vehicle

- Earth return vehicle
- arrives at Mars before crew
- waits in orbit around Mars to transport crew home

Triconic Aeroshell

- sized to "Magnum" booster
- defines the size & shape of the Mars vehicles

- Crew Seating
 +g_x for aerobraking (seatbacks 23° forward of vertical)
 +g_z for landing (seatbacks vertical)

ISRU: in situ resource utilization

Reference Physiological Adaptation to Physical Challenges

Gravity

Acceleration

	Earth Launch	Transit	Mars Landing	Mars Surface	Mars Launch	Transit	Earth Landing
G-Load	up to 3 g	0 g	3-5 g	1/3 g	TBD g	0 g	3-5 g
Notes	boost phase (8min); TMI (min)	4-6 months	aerobraking (min); parachute braking (30s); powered descent(30s)	18 months	boost phase (min); TEI (min)	4-6 months	aerobraking (min); parachute braking (min)
Cumulative hypo-g	0		4-6 months		22-24 months		26-30 months
G transition	1 g to 0 g		0 g to 1/3 g		1/3 g to 0 g		0 g to 1g

TMI: trans-Mars injection TEI: trans-Earth injection

Impacts of Extended Weightlessness

Physical tolerance of stresses during aerobraking, landing, and launch phases, and strenuous surface activities

Bone loss

- no documented end-point or adapted state
- countermeasures in work on ground but not yet flight tested

Muscle atrophy

resistive exercise under evaluation

Cardiovascular alterations

pharmacological treatments for autonomic insufficiency

Neurovestibular adaptations

- vehicle modifications, including centrifuge
- may require auto-land capability

Artificial Gravity (AG)

What is required to certify AG as a valid countermeasure to extended weightlessness? (per Artificial Gravity Working Group, January 1999)

- Comprehensive ground research program
- Flight research program
 - ISS
 - STS

- Focus on the following research priorities
 - What are the optimal prescriptions for intermittent AG
 - Identify G threshold values needed to maintain HHP (including 1/3 G exposure for 18 months)
 - Determine optimal AG characteristics (e.g., radius and angular velocity)

Artificial Gravity Considerations

Can artificial gravity preserve physiological function during long-duration missions?

Actions needed to accomplish Mars mission transit

- Vigorously investigate AG to reach a consensus about AG for Mars mission
- Explore current approach: AG may be used to pre-adapt crew to Mars gravity (outbound) and re-adapt to Earth gravity (inbound):
 - provides extended physiological protection from 1 G
 - eases transition throughout 3/8 G exposure
 - requires AG capability of 1 G outbound and inbound
- Define parameters for optimal g level
 - initiate benchmark studies based on best guess
 - evaluate protective effects (if any) of 3/8 g
 - continue studies on optimal angular rate:

Note: no consensus currently exists on AG levels needed for exploration missions

Physical Challenges

Radiation

	Earth Launch	Transit	Mars Landing	Mars Surface	Mars Launch	Transiţ	Earth Landing
Source	van Allen belts (trapped radiation)	GCR (quiet sun); SPE (active sun); nuclear power reactor		GCR (quiet sun); SPE (active sun); nuclear power reactor		GCR (quiet sun); SPE (active sun); nuclear power reactor	
Exposure	SEP option: 3 passengers or more	4-6 months		18 months; shielded by Mars' bulk & atmosphere		4-6 months	
Cumulative Exposure	hours-days		4-6 months		22-24 months		26-30 months

GCR: galactic cosmic radiation SPE: solar particle events SEP: solars electric propulsion

LEO: low Earth orbit SEP: solar electronic propulsion TMI: trans-Mars injection

from SEP Team package, Nov., 1997

Mars Transit Requirements

Facilities must be mostly autonomous (one-way Earth-Mars communications time is 3-22 min.)

Health care facilities

- → Nutrition
- → Exercise
- Psychological support
 - planned activities
 - entry/landing simulations
 - housekeeping
 - refresher training
 - cruise science (microgravity, astronomy, biomedical, etc.)
 - communications
 - reliable contact with mission control, family, & friends
- → Health Care
 - autonomous care
 - telemedicine

Habitat facilities & functions

Exercise & conditioning for Mars surface activities

Recreation & privacy

Maintenance & housekeeping (including workshop)

Abort Scenarios for Design Reference Mission

"Abort to Earth" options are very limited

- Trans-Mars Injection (Earth-departure maneuver)
 - Option 1: nuclear thermal propulsion (or other impulsive maneuver) makes "abort-to-Earth" progressively more difficult after first hours-days post-TMI
 - Option 2: solar electronic propulsion (or other low-thrust, long-duration maneuver) uses limited spacecraft maneuvering fuel and requires long time period
- Missed Mars orbit insertion or direct entry
 - Mars flyby <u>may</u> result in 2-year return to Earth that is not very different from completed mission

"Abort to Mars" options

- Life support and other resources already deployed
- Mars environment provides the most safety after Earth (offers radiation shield and partial gravity)

Peak Physical Challenges

Mars Surface Phase (post-landing through pre-launch)

Assumptions about Mars surface gravity

- Too LOW to be beneficial (for preserving bone integrity, etc.)
- Too *HIGH* to be ignored (for avoiding g-transition vestibular symptoms)

Challenges

- Physical
 - g-transition (first few days only?)
 - prolonged exposure to 1/3 g
 - high-intensity surface activity
 - EMU hypobaric environment
 - 70 kg EMU (partially self-supporting)
 - surface trauma risk
- Communications no real-time MCC support (one-way communications: 3-22 min.)
 - crew highly autonomous
 - Earth monitoring for trend analysis only

EMU: extravehicular mobility unit MCC: Mission Control Center

Possible Mars Landing Sequence

Entry phase

- → 125 km to 8 km
- → 3302 m/s to 734 m/s
- → Time: 21 min:13 sec

Parachute phase (saves 10 T of fuel)

- **▶** 8 km to 5 km
- > 734 m/s to 200 m/s
- → Time: 36 sec

- ⇒ 5 km to TD
- > 200 m/s to 0 m/s
- ▶ Time: 48 sec

Peak Physical Challenges

Strategy for Mars Surface Operations

Background

Anecdotal evidence suggests only ~50% of Russian *Mir* crewmembers are ambulatory *with* assistance immediately after landing, increasing to nearly 100% within hours

Assume

Only 3 out of 6 Mars crewmembers are ambulatory immediately after landing

Start with passive tasks inside vehicle and progress to strenuous tasks on surface

- First 1-3 days activities limited to reconfiguration of lander/habitat and surface reconnaissance
- ➤ Then, conduct first Mars walk(s) in vicinity of lander (umbilical instead of backpack?)
- Next, use unpressurized rover for early, shorter excursions
- After a week or more, extended excursions are possible

Mars Surface Stay Requirements

Autonomous facilities

Crew health care

- ▶ Radiation Protection
- ► Medical Surgical care
- Nutrition Food Supply
- ▶Psychological support
 - meaningful work
 - surface science
 - planetary
 - biomedical
 - simulations of Mars launch, TEI, contingencies
 - progressive debriefs, sample processing, etc.
 - housekeeping
 - communications capability

Habitat

- Maintenance/housekeeping
 - workshop HRET needs
- Exercise supplemental to Mars surface activities
- Recreation
- Privacy

Life Sciences on the Martian Surface

Periodic health checks for:

- bone integrity
- cardiovascular/cardiopulmonary function
- musculoskeletal fitness
- hematological parameters

Health assessments will also serve as applied research:

- probably longest period away from Earth to date
- probably longest exposure to hypogravity (1/3 g) environment to date

Autonomous Clinical Care

Crew Health Care Facility:

- non-invasive diagnostic capabilities for medical/surgical illnesses, SMART systems
- non-invasive imaging capabilities
- definitive surgical therapy robotic surgical assist devices, surgical simulators
- blood replacement therapy
- laboratory support

Telemedicine:

- preventive health care
- consultative diagnostic/therapeutic capabilities

Earth Return Transit Requirements

Autonomous Facilities

(one way Earth-Mars communications time is 3-22 min.)

Crew health care

- Nutrition
- Psychological support
 - -meaningful work
 - simulations of Earth aerobraking, contingencies
 - debriefs, reporting, consultation with primary investigator
 - housekeeping
 - cruise science
 - Mars sample analysis?
 - microgravity, astronomy, other?
 - -communications capability

- Maintenance/housekeeping
 - -workshop
- Exercise supplemental to Mars surface activities
- Recreation
- Privacy

Conceptualization of crew quarters

Space Medicine Issues

Projected rates of illness or injury

Based on U.S. and Russian space flight data, U.S. astronaut longitudinal data, & submarine, Antarctic winter-over, and military aviation experience:

- Incidence of significant illness or injury is 0.06 per person per year
- as defined by U.S. standards
- requiring emergency room visit or hospital admission

Expected incidence for a DRM of 6 crewmembers and 2.5 year mission is **0.90 person per mission**, approximately one person per mission

- Subset of injuries or illness requiring intensive care support is
 0.02 per person per year
 - Expected incidence is 0.30 per person per year, about once per three missions (~80% of intensive care support lasts only 4-5 days)

Note: any such occurrences will also preoccupy onboard care-giver.

Past Experience

Mars DRM

Space Medicine Issues

Reports of illness and injury during space flight

Incidence Common (>50%)

- skin rash, irritation
- foreign body
- eye irritation, corneal abrasion
- headache, backache, congestion
- gastrointestinal disturbance
- cut, scrape, bruise
- musculoskeletal strain, sprain
- fatigue, sleep disturbance
- space motion sickness
- post-landing orthostatic intolerance
- post-landing neurovestibular symptoms

Incidence Uncertain

- infectious disease
- cardiac dysrhythmia, trauma, burn
- toxic exposure
- psychological stress, illness
- kidney stones
- pneumonitis
- urinary tract infection
- spinal disc disease
- unplanned radiation exposure

Conceptualization of crew healthcare & exercise facilities

Human Factors and Habitability

The following require engineering solutions:

- air purifier
- water purifier
- particulate analyzer
- microbial analyzer
- waste manager/recycling
- food storage
- food processor
- clothing manager (e.g., washing machine)
- lighting levels
 - intensity (threshold level)
 - periodicity (circadian rhythmicity)

Conclusions

The human element is the most complex element of the mission design

Mars missions will pose significant physiological and psychological challenges to crew members

Human engineering, human robotic/machine interface and life support issues critical

Critical Roadmap Research Path required for issues that <u>may</u> be show-stoppers (bone, radiation)

ISS platform must be used to address exploration issues before any "Go/No Go" decision

A significant amount of ground-based and specialized flight research will be required - the Critical Path Roadmap project will direct our research toward exploration objectives